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Abstract

One of four overarching goals of Healthy People 2020 (HP2020) is to achieve health equity, 

eliminate disparities, and improve the health of all groups. In health disparity indices (HDIs) such 

as the mean log deviation (MLD) and Theil index (TI), disparities are relative to the population 

average, whereas in the index of disparity (IDisp) the reference is the group with the least adverse 

health outcome. Although the latter may be preferable, identification of a reference group can be 

affected by statistical reliability. To address this issue, we propose a new HDI, the Rényi index 

(RI), which is reference-invariant. When standardized, the RI extends the Atkinson index, where a 

disparity aversion parameter can incorporate societal values associated with health equity. In 

addition, both the MLD and TI are limiting cases of the RI. Also, a symmetrized Rényi index 

(SRI) can be constructed, resulting in a symmetric measure in the two distributions whose relative 

entropy is being evaluated. We discuss alternative symmetric and reference-invariant HDIs 

derived from the generalized entropy (GE) class and the Bregman divergence, and argue that the 

SRI is more robust than its GE-based counterpart to small changes in the distribution of the 

adverse health outcome. We evaluate the design-based standard errors and bootstrapped sampling 

distributions for the SRI, and illustrate the proposed methodology using data from the National 

Health and Nutrition Examination Survey (NHANES) on the 2001–04 prevalence of moderate or 

severe periodontitis among adults aged 45–74, which tracks Oral Health objective OH-5 in 

HP2020. Such data, which uses a binary individual-level outcome variable, are typical of HP2020 

data.
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1. Background and introduction

The measurement, tracking, and elimination of health disparities are central to the U.S. 

Healthy People initiative; see Green and Fielding (2011). One of two overarching goals of 

Healthy People 2010 (HP2010) was to “eliminate health disparities” (U.S. Department of 

Health and Human Services, 2000, 2006; National Center for Health Statistics, 2011), and 

one of four overarching goals of Healthy People 2020 (HP2020) is to “achieve health equity, 

eliminate disparities, and improve the health of all groups” (http://healthypeople.gov). There 

are several concepts and definitions associated with the terms health disparities and health 

equity, which are reviewed in Braveman (2006). In this paper, we do not discuss how to 

measure or assess health equity. Instead, we restrict our attention to the measurement of 

health disparities, although, as seen below, measures of health disparities are inevitably tied 

to normative or societal values associated with health equity. Our working definition of 

health disparity is that of Keppel, Pearcy and Klein (2004), who state that “in the context of 

public health, a disparity is the quantity that separates a group from a reference point on a 

particular measure of health that is expressed in terms of a rate, proportion, mean, or some 

other quantitative measure.”

When there are three or more population groups, e.g., population breakdown by race and 

ethnicity, education, or income, the differences among those groups in the magnitude of 

their disparities relative to the reference point can be summarized using a between-group 

index. Such between-group health disparity indices (HDIs) have been reviewed in Wagstaff, 

Paci and van Doorslaer (1991), Mackenbach and Kunst (1997), and Pearcy and Keppel 

(2002). Their characteristics and limitations have been investigated in Keppel, Pearcy and 

Klein (2004), Keppel et al. (2005), Levy, Chemerynski and Tuchmann (2006), and Harper et 

al. (2008, 2010).

For a population that is partitioned into m mutually exclusive groups of sizes n1, n2, ···, nm, 

with , we study the distribution of a particular adverse health outcome, which, at 

the individual level, is given by yij, say, for individual i in group j. Specifically, our goal is 

to compare the aggregate health outcomes , j = 1, 2, ···, m, across groups. 

When the variable yij is a binary variable, indicating presence or absence of the adverse 

health outcome for individual i, the aggregate y·j is simply the frequency count of the 

number of individuals in group j with the adverse health outcome.

We look upon (between-group) HDIs as measures of generalized relative entropy (or 

divergence) between two nonnegative mass functions p = (p1, p2, ···, pm) and q = (q1, q2, ···, 

qm). In the analysis of health disparities, the quantities pj can be weights that the analyst 

assigns to each population group j. The groups are said to be ‘equally-weighted’ if they are 

assigned equal weights (e.g., 1/m) and ‘population-weighted’ if they are assigned weights 
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that are proportional to their size (e.g., nj/n). On the other hand, the qj can quantify the 

disease burden in group j. Various HDIs differ in the specification of the qj. Entropy-based 

HDIs commonly specify qj as a function of the ratio between the group average (ȳ·j) and a 

fixed reference for measuring disparities. The reference can be the population average (ȳ··), 

the least adverse health outcome (min1≤k≤m ȳ·k), a Healthy People target, or any other 

reference.

In this paper, we introduce a new class of HDIs, the Rényi index (RI), which is based on a 

generalized Rényi (or alpha-gamma) divergence. Generalized Rényi divergence was 

considered by Fujisawa and Eguchi (2008) in the context of robust parameter estimation in 

the presence of outliers and is reviewed in Cichocki and Amari (2010). The RI is a class of 

HDIs that are invariant to the choice of the reference used for evaluating disparities. This 

invariance property—also known as ‘strong scale-invariance’—is relevant to Healthy 

People, as well as to other initiatives that monitor health disparities, because the 

identification of a reference group can be affected by statistical reliability; see National 

Center for Health Statistics (2011). Reference-invariance is not unique to the RI. As 

discussed in section 3, the well-known generalized entropy (GE) class, for one, can be 

modified for strong scale-invariance. Nonetheless, the robustness of the RI makes it less 

sensitive than its GE-based counterpart to small changes in the distribution of the adverse 

health outcome.

Looking at HDIs as measures of generalized relative entropy (or divergence) between two 

nonnegative mass functions p and q—not necessarily probabilities—provides a common 

mathematical framework within which various HDIs can be compared. In particular, this 

unified framework enables a sensitivity analysis for the effect of changing the reference used 

for evaluating disparities (e.g., average versus best group rate) as well as the effect of 

modifying the weighting distribution pj (equally-weighted versus population-weighted), 

which are issues of concern; see Harper et al. (2010).

The RI is a class of HDIs, {RIα : α ∈ ℝ}. When the parameter α > 0 increases, the rescaled 

index αRIα is nondecreasing; therefore, α can be interpreted as a disparity aversion 

parameter in a manner akin to the Atkinson index (Atkinson, 1970). Indeed, for α > 0, the 

Atkinson index simply is obtained via the standardizing exponential transformation 1 − 

e−αRIα. The disparity aversion parameter can reflect a range of societal values attached to 

inequality. In Levy, Chemerynski and Tuchmann (2006), the Atkinson index is shown to 

fulfill some of the core axioms of health benefits analysis, e.g., Pigou-Dalton transfer 

principle and subgroup decomposability. The authors also argue that, unlike some indices in 

the GE class, the Atkinson index avoids a value judgment about the relative importance of 

transfers at different percentiles of the distribution of the adverse health outcome.

In this paper, we illustrate the proposed methodology using data from the National Health 

and Nutrition Examination Survey (NHANES) on the 2001–04 prevalence of moderate or 

severe periodontitis among U.S. adults aged 45–74. These binary individual-level data track 

Oral Health objective OH-5 in HP2020. NHANES is the data source for approximately 1 in 

7 population-based objectives in HP2020. Close to half of the (approximately) 1,200 

objectives in HP2020 are population-based, and most, though not all, such objectives track a 
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proportion or a rate where the underlying individual-level variable has a binary outcome. 

See http://healthypeople.gov. The supplement to this article in Talih (2012a) provides 

further illustration of the proposed methodology with continuous individual-level data on 

total blood cholesterol levels among adults aged 20 and over, from NHANES 2005–08. 

These data track Heart Disease and Stroke objective HDS-8 in HP2020.

1.1. Common practice

The most commonly used between-group HDIs are weighted sums of the form 

, where rj = qj/pj, for some function f(r); see Firebaugh (1999).

Population average as reference—When the distributions p and q are given by pj = 

nj/n, qj = pjrj, and rj is the ratio of the average ȳ·j of the adverse health outcome in group j 

relative to the population average ȳ··,

(1.1)

the resulting class of HDIs, with f(r) = fα(r) := (1 − r1−α)/[α(1− α)], is the generalized 

entropy (GE) class, which extends the mean log deviation (MLD; f1(r) = −ln r) and the Theil 

index (TI; f0(r) = r ln r); see Haughton and Khander (2009; chapter 6).

That the GE HDIs are nonnegative, that equal zero only when rj = 1 for all j, follows from 

the convexity of the function fα(r) specified above and the fact that the pj and qj sum to one

—GE is a class of Csiszár f-divergences; see Ali and Silvey (1966). However, the 

requirement that the distributions p and q be probability mass functions can be restrictive.

Least adverse health outcome as reference—Keppel et al. (2005) recommend 

measuring disparities relative to the group with the least adverse health outcome. Instead of 

(1.1), this would result in rj’s of the form

(1.2)

Clearly, with the rj as in (1.2) and the pj = 1/m or nj/n, the qj = pjrj no longer define a 

probability mass function.

The health inequality paradox—There are two essentially distinct approaches to 

evaluating health disparities overall, each of which makes an explicit value judgment 

regarding the trade-off between an individual’s burden of disease and a group’s burden of 

disease. Used in the GE class, which includes the MLD and TI, the population-weighted 

distribution pj = nj/n is consistent with individuals in the population being equally-weighted

—with weights 1/n—regardless of their group membership. In contrast, the equally-

weighted distribution pj = 1/m, which is used in the index of disparity (IDisp) of Keppel et 

al. (2005), results in more weight being given to individuals in smaller population groups 
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than in larger ones. [Keppel et al. use weights 1/(m − 1) instead of 1/m, since there are only 

m − 1 comparisons relative to the group with the least adverse health outcome.]

Because of this trade-off between the individual’s burden of disease and the group’s burden 

of disease, potential impact of public health interventions is modified by the specific 

measure of health disparities used. When all groups are equally-weighted, an intervention 

that targets a relatively small group with a relatively large burden of disease can prove very 

effective in reducing overall disparity. On the other hand, when groups are population-

weighted, that same intervention will not have as much impact on reducing overall disparity, 

and other interventions might be desired; see Harper et al. (2010), Frohlich and Potvin 

(2008), and Rose (1985). The aforementioned trade-off between individual’s health and 

population’s health is, perhaps, what differentiates most strikingly analyses of health 

disparities from studies of wealth inequalities—the latter having provided the impetus for 

the development of the GE and related families of inequality indices. When possible, 

methods used for comparing health outcomes should similarly be differentiated from those 

used for comparing income distributions.

1.2. Organization of the paper

The paper is organized as follows.

In section 2, we introduce the generalized Rényi divergence as the basis for developing the 

RI. A critical property of the generalized Rényi divergence is its invariance to scaling of 

either of the two distributions whose divergence is being evaluated; see section 2.1. Thus, 

when monitoring health disparities, the RI remains the same, regardless of whether we use: 

the population average as the denominator for the relative disparities rj, as in (1.1); the group 

with the least adverse health outcome as the denominator, as in (1.2); or use a Healthy 

People or some other target as the denominator.

The RI extends the MLD and TI. The MLD is mostly influenced by groups with large 

population shares pj = nj/n, whereas the TI is mostly influenced by groups where the adverse 

health outcome is more frequent or severe (qj = y·j/y··); see section 2.2. In section 2.3, we 

show that the RI can be symmetrized, which yields a symmetric measure in the two 

distributions whose relative entropy is being evaluated. Thus, when pj = nj/n, qj = pjrj, and 

the rj are as in (1.1), the resulting symmetrized Rényi index (SRI) generalizes the 

symmetrized Theil index (STI) of Borrell and Talih (2011).

In section 2.4, we show that, for α > 0, the Atkinson index simply is obtained via the 

standardizing exponential transformation 1 − e−αRIα. Hence, the parameter α > 0 is a 

disparity aversion parameter for αRIα and it can reflect a range of societal values attached to 

inequality.

Because of scale invariance, the RI and SRI only depend on the relative disparities rj in (1.1) 

or (1.2) through the numerator ȳ·j. Thus, in section 2.5, we express the between-group RI 

and SRI as functions of the group sizes nj and means ȳ·j, both when groups are population-

weighted (pj = nj/n) and when groups are equally-weighted (pj = 1/m).
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In section 3, we discuss two potential alternatives to the RI based on the GE (section 3.1) 

and Bregman class (section 3.2). In section 3.3, we compare the (reference-invariant) SRI 

with a symmetrized reference-invariant GE under simple hypothetical scenarios and argue 

that the SRI is less sensitive to small changes in the distribution of the adverse health 

outcome.

In section 4, we proceed as in Borrell and Talih (2011) and Biewen and Jenkins (2006) to 

derive design-based standard errors for the (between-group) RI and SRI using Taylor series 

linearization. To validate our derivation, we implement in the supplemental R code the 

balanced repeated replication and bootstrap methods, introduced by McCarthy (1969) and 

Rao and Wu (1988), respectively; see Talih (2012b). Rescaled bootstrap enables the design-

based estimation of the sampling distribution of the RI and SRI. Further, we examine the 

effect of the weighting distribution p, comparing the population-weighted (pj = nj/n) to the 

equally-weighted case (pj = 1/m).

In section 5, we illustrate the proposed methodology using periodontal disease data from 

NHANES. Section 6 concludes.

The technical appendix includes a detailed discussion of the decomposability of the RI and 

SRI; see Talih (2012c). Decomposability is the separation of the total or aggregate HDI into 

between- and within-group components; see Bourguignon (1979). Just like for the GE class 

of HDIs, decomposability allows for multiple predictors of individual-level disparities to be 

considered in succession, as in multi-way analysis of variance. We examine the 

decomposition of the total RI and SRI when groups are population-weighted (e.g., pj = nj/n)

—which, as mentioned earlier, is consistent with individuals being equally-weighted—as 

well as when groups are equally-weighted (e.g., pj = 1/m). In the latter case, only a weak 

decomposition of the aggregate RI and SRI holds. The technical appendix also contains the 

derivation of the designed-based standard errors for the total or aggregate RI and SRI and 

their within-group components; see Talih(2012c).

2. An Entropy-based reference-invariant health disparity index

Consider two nonnegative (yet, not necessarily probability) mass functions p and q. Suppose 

they are defined on a common set of integers {1, 2, ···, m}, which we take to be group 

membership indicators for different socioeconomic and demographic groups in a larger 

population. In analyses of health disparities, pj typically denotes the relative population 

share of group j, whereas qj denotes its relative disease burden (or, inversely, the relative 

health advantage). However, as discussed in section 1, other choices for the quantities pj and 

qj may be desired. From the mathematical point of view, investigating health disparities 

within the population amounts to ascertaining the discrepancy between the two distributions 

p and q.

Definition—Based on a divergence proposed by Fujisawa and Eguchi (2008) for robust 

parameter estimation in the presence of outliers, and for rj = qj/pj and a scalar α ≠ 0, 1, 

Cichocki and Amari (2010) define the generalized Rényi (or alpha-gamma) divergence as
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(2.1)

Remark—Our approach, reflected in (2.1) and throughout the paper, differs from the 

standard information theoretic approach in that we introduce dependence between the 

distributions p and q. The former is a weighting distribution—typically, the pj are the 

relative sizes of groups in the population. The latter is constructed from qj = pjrj. Each rj 

specifies the disparity for group j relative to a common reference point, as explained in 

section 1.1.

2.1. Scale invariance and relation to Rényi divergence

Due to the form of the argument of the logarithm in (2.1), the generalized Rényi divergence 

Rα(p||q) is invariant to re-scaling of either the p or the q distributions. Indeed, for any 

positive scalars c1 and c2,

In particular, for p̄j = pj/Σp, q̄j = qj/Σq, and r̄j = q̄j/p̄j we have

(2.2)

When α > 0, the divergence αRα(p̄||q̄) is the Rényi divergence between two probability mass 

functions—here, p̄ and q̄—introduced by Rényi (1960).

Nonnegativity—When α > 0 and α ≠ 1, Jensen’s inequality ensures that Rα(p̄||q̄) ≥ 0, with 

equality if and only if p = cq for some positive scalar c; see, for example, van Erven (2010; 

chapter 6). By skew-symmetry, see (2.5) below, it follows that Rα(p||q) ≥ 0 for all α ≠ 0, 1.

Monotonicity—Jensen’s inequality also ensures that the Rényi divergence αRα(p||q) is 

nondecreasing when α > 0 increases, see van Erven (chapter 6). Thus, when α > 0, α can be 

looked upon as an inequality (or divergence) aversion parameter for the Rényi divergence.

Practical relevance of scale invariance—Henceforth, we refer to the HDI that is 

derived from (2.2) as the Rényi index (RIα, or RI, for short). Scale invariance is appropriate 

when it is believed that uniform proportional changes across the population should leave the 

HDI unchanged; see Levy, Chemerynski and Tuchmann (2006). Scale invariance is 

especially desirable when seeking HDIs that are invariant to the choice of the reference for 

evaluating disparities, because, as seen in the Healthy People 2010 Final Review, 

identification of a reference group can be affected by statistical reliability. In this respect, 

the RI remains the same, whether we use the population average as the denominator for the 
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relative disparities rj, as in (1.1), the group with the least adverse health outcome, as in (1.2), 

or take any pre-set (positive) target, e.g., a HP2010 or HP2020 target.

2.2. Limiting cases

The generalized Rényi divergence is extended by continuity to the limiting cases α → 1 and 

α → 0 (l’Hôpital’s rule):

(2.3)

When pj = nj/n, qj = pjrj, and the rj are as in (1.1), these special limiting cases of the RI with 

α → 1 and α → 0 are the MLD and the TI, respectively; see Borrell and Talih (2011).

Interpretation of the MLD and the TI—The MLD and the TI were originally proposed 

as measures of income inequality by Theil (1967). Both the MLD and the TI are well-

established measures of relative entropy between two probability distributions, due to 

Kullback and Leibler (1951). The general form of the Kullback-Leibler (K-L) divergences is

(2.4)

When pj = nj/n, qj = pjrj, and the rj are as in (1.1), MLD = KL(p||q) whereas TI = KL(q||p). 

Thus, the MLD and the TI summarize the disproportionalities between the relative sizes of 

groups in the population and those groups’ shares of an adverse health outcome. In this 

regard, from (2.3), the MLD is seen as a log-likelihood ratio test statistic for the null 

hypothesis that group shares of the adverse health outcome have been “allocated” according 

to the relative sizes of the groups in the population. Similarly, the TI tests the null 

hypothesis that group shares of the total population have been “allocated” according to the 

groups’ shares of the adverse health outcome. This interpretation of the MLD and TI as log-

likelihood ratio tests will be revisited in the case-study of section 5 to assess the statistical 

significance of the symmetrized Rényi index.

2.3. Symmetrized Rényi index

Generalized Rényi divergence in (2.2) is asymmetric in the two distributions whose 

generalized relative entropy is being evaluated: Rα(p||q) will be mostly influenced by groups 

with large values of pj, whereas Rα(q||p) will be mostly influenced by groups with large 

values of qj. Borrell and Talih (2011) discuss this issue of lack of symmetry in the context of 

the special cases R1(p̄||q̄) = KL(p̄||q̄) (MLD) and R0(p̄||q̄) = KL(q̄||p̄) (TI), with pj = nj/n, qj = 

pjrj, and the rj as in (1.1). Yet,

(2.5)

Thus, a symmetrized generalized Rényi divergence, SRα(p, q), is obtained from [Rα(p||q) + 

R1−α(p||q)]/2. For p̄j = pj/Σp, qj̄ = qj/Σq, and r̄j = q̄j/p̄j, SRα(p, q) is given by
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(2.6)

We refer to the HDI that is derived from (2.6) as the Symmetrized Rényi index (SRI).

Limiting case—As in section 2.2, SRα(p, q) is extended by continuity to the cases α → 1, 

0:

(2.7)

The divergence in (2.7) is a symmetrized Kulback-Leibler divergence, also known as half 

the Jeffrey’s divergence; see, for example, Pollard (2002). When pj = nj/n is the population 

share for group j, the rj are as in (1.1), and qj = pjrj is the disease share y·j/y··, Borrell and 

Talih (2011) coin the symmetrized divergence in (2.7) the symmetrized Theil index (STI).

2.4. Standardization and relation to the Atkinson index

For α > 0, a standardized generalized Rényi divergence, with values between 0 and 1, and 

which we denote by Aα(p||q), can be defined for any nonnegative (not necessarily 

probability) distributions p and q:

(2.8)

Thus, when α > 0, we have

For pj = nj/n, qj = pjrj, and the rj as in (1.1), this is the (between-group) Atkinson index, 

introduced by Atkinson (1970) for measuring income inequalities, with parameter α > 0 

quantifying society’s aversion to inequality.

Standardized SRI—Applying a standardizing exponential transformation similar to the 

one in (2.8), we construct a standardized SRI, with values between 0 and 1, as follows:

(2.9)

This construction preserves symmetry of the SRI around the parameter value α = 1/2. Since 

αSRα(p, q) is nondecreasing for α ≥ 1/2, α is a disparity aversion parameter for the 

standardized SRI. By symmetry, 1 − α is a disparity aversion parameter when α < 1/2. The 
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value α = 1/2 can be interpreted as the most conservative choice for disparity aversion in the 

standardized SRI, in that it gives a lower bound for the index.

2.5. The RI and SRI as between-group HDIs

By construction, we have qj = pjrj and, from (1.1) or (1.2), rj ∝ ȳ·j. From (2.1) and (2.6), we 

have expressions for the between-group RI and SRI in terms of the group sizes nj and means 

ȳ·j, which we list next for α ≠ 0, 1. Henceforth, to distinguish the between-group RI 

(respectively, SRI) from the within-group RI (respectively, SRI) and the aggregate or total 

RI (respectively, SRI) that are discussed in the technical appendix (Talih, 2012c), we use the 

notation [RI]B (respectively, [SRI]B).

• Population-weighted group contributions pj = nj/n

(2.10)

(2.11)

• Equally-weighted group contributions pj = 1/m

(2.12)

(2.13)

Limiting cases—The expressions for the RI and SRI when α → 1 or α → 0 are obtained 

by taking limits in (2.10–2.13) above. We list them here for ease of reference. (2.10) with α 

→ 1 yields the MLD,

whereas α → 0 yields the TI,

As well, (2.11) with either α → 1 or α → 0 yields the STI,
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On the other hand, taking the limit when α → 1 in (2.12) results in

while the limit when α → 0 is

Thus, the limit in (2.13) when α → 1 or 0 is

3. Alternatives to the Rényi index

3.1. Generalized entropy class

A class of measures that originate in the measurement of income inequalities is the 

generalized entropy (GE) class, which specifies pj = nj/n and the ratios rj as in (1.1); see 

Biewen and Jenkins (2006), Elbers et al. (2008), and references therein. The GE class is a 

special case of alpha divergence. The latter was introduced by Chernoff (1952) to evaluate 

the asymptotic efficiency of likelihood ratio tests. Cressie and Read (1984) also discuss such 

measures for multinomial goodness-of-fit tests. Using the parameterization in Cichocki and 

Amari (2010), alpha divergence is defined for any nonnegative mass functions p and q and 

any real number α, α ≠ 0, 1, as

(3.1)

where, as before, the rj are the ratios rj = qj/pj. Just like the generalized Rényi divergence, 

Dα(p||q) can be extended by continuity to the limiting cases α → 1 and α → 0, yielding the 

K-L divergences in (2.4). It is well known that alpha divergence Dα(p||q) remains 

nonnegative, Dα(p||q) ≥ 0, with equality if and only if pj = qj for each j in 1, 2, ···, m. When p 
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and q are probability mass functions, i.e.,  and , alpha divergence is a 

Csiszár f-divergence; see Ali and Silvey (1966).

We refer to the index that is derived from (3.1) as the GE index. Just like with the Rényi 

index, a symmetrized GE index is obtained simply by taking the arithmetic average of Dα(p||

q) and D1−α(p||q):

(3.2)

In addition, the symmetrized GE index in (3.2) can be standardized to take values between 0 

and 1 using the exponential transformation in (2.9).

Further, whereas alpha divergence is not scale-invariant,—it only holds that, for a positive 

scalar c, Dα(cp||cq) = cDα(p||q),—a reference-invariant GE index Dα(p̄||q̄) can be 

constructed easily using the normalized distributions p̄ and q̄, because  and  for 

any positive scalars c1 and c2. (As before, p̄j = pj/Σp, q̄j = qj/Σq, and r̄j = q̄j/p̄j.) Thus,

(3.3)

We refer to this HDI as the symmetrized reference-invariant GE index.

Proposition—For nonnegative mass functions p and q on {1, 2, ···, m}, let p̄j = pj/Σp, q̄j = 

qj/Σq, and r̄j = q̄j/p̄j. For SRα(p̄, q̄) in (2.6) and SDα(p̄, q̄) in (3.3):

(3.4)

(3.5)

with equality when α → 1 or α → 0.

Proof: Without loss of generality, let α > 1. The proof follows from the application of the 

arithmetic-geometric mean inequality and the fact that x−1 ≥ ln x for all x > 0.

In section 3.3, we show not only that the SRI is more conservative than the symmetrized 

reference-invariant GE index for α > 1, as implied by (3.4), but also that the SRI is more 

robust to small changes in the disease distribution q, which renders it a more desirable HDI.

The GE class is well-studied in the economics literature. The GE class is consistent with a 

certain set of axiomatic properties that are relevant for income distributions; see, for 

example, Cowell, Davidson and Flachaire (2011), Cowell and Kuga (1980), and Shorrocks 

(1980). Even though such axioms are not sufficient for health benefits analyses, the GE class 

remains a widely used class for constructing HDIs; see Levy, Chemerynski and Tuchmann 
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(2006). In addition to the K-L divergences (α → 1 or 0), special cases of alpha divergence in 

(3.1) are the Pearson (α =−1) and Neyman (α = 2) chi-squared statistics and the squared 

Hellinger distance (α = 0.5).

3.2. Bregman class

Bregman divergences are generated from any twice differentiable and strictly convex 

function Φ as follows:

A common choice for the generating function Φ, for β ≠ 0,1, is

which yields the beta divergence, defined for β ≠ 0,1 and rj = qj/pj,

(3.6)

and appropriate extensions by continuity when β → 0 or 1; see Cichocki and Amari (2010). 

As before, the limiting case β → 0 reduces to the Kulback-Leibler divergence KL(q||p) in 

(2.4). However, the case β → 1 is no longer KL(p||q), but, instead, the so-called Itakura-

Saito (IS) divergence, given by

Beta divergence in (3.6) provides a class of HDIs that are worth investigating in future work. 

For instance, a symmetrized reference-invariant beta divergence is obtained from [Bβ(p||q) + 

Bβ(q||p)]/2, resulting in

However, as explained in section 1, the pj are weights that are assigned by the analyst to 

each population group j, commonly using either equal weights (e.g., 1/m) or size-based 

weights (e.g., nj/n). Therefore, in the context of this paper, the analyst would need to provide 

additional justification for the logarithmic rescaling of the pj in (3.6) by the factor 1 − β, 

which is not the case for alpha divergence (3.1) or generalized Rényi divergence (2.2).
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Magdalou and Nock (2011) derive the Bregman class as the unique class of measures that 

are consistent with certain inequality measurement principles, including the transfer 

principle (albeit modified) and decomposability. By the authors’ own assessment, the key to 

their derivation is a new principle of “judgment separability” that they introduce for the 

analysis of income inequalities. In this paper, we restrict attention to reference-invariant 

HDIs (i.e., strong scale-invariant measures), whereby judgment separability is not necessary, 

because it reduces to the weaker principle of “indiscernability of identicals. ” The latter 

postulates simply that an inequality measure D satisfy D(p||p) = 0 for any distribution p.

For those reasons, we do not discuss beta divergence in section 3.3; we compare the SRI 

only with the symmetrized reference-invariant GE index.

3.3. SRI and changes therein

To illustrate the robustness of the SRI (2.6) to small changes in the distribution q = pr, for a 

fixed p, and in comparison with the symmetrized reference-invariant GE index in (3.3), we 

examine the SRI under simple scenarios borrowed from Harper et al. (2010).

In Table 1, we consider a population that is divided into four groups of equal size, so that the 

population-weighted distribution pj = nj/n is the same as the equally-weighted distribution pj 

= 1/4. At baseline, group D has the least adverse health outcome, with a rate of 10%, 

whereas group A has the most adverse outcome, with a rate of 50%. Groups B and C have 

rates of 40% and 30%, respectively. In scenarios 1 and 3, the groups with the least and most 

adverse outcomes remain the same, but, in scenario 1 the rate for group B decreases 10 

percentage points from baseline, whereas in scenario 3 the rate for group C increases 10 

percentage points from baseline, in both scenarios achieving equal rates for groups B and C. 

In scenario 2, the rate for group A decreases 10 percentage points while the other group rates 

remain unchanged. Because in scenario 3 group D (the “best-off” group) is further separated 

from the other groups, with a 30 percentage points difference from the next best (group C), 

compared to a 20 percentage points difference at baseline, we expect that disparities will 

increase overall. In scenario 2, the gap between the best-off group (group D) and the worst-

off group (group A) has decreased; therefore we expect an overall decrease in disparities. In 

scenario 1, we similarly expect a decrease in disparities because the rate for group B has 

moved closer to the best rate.

The top- and bottom-left panels in Figure 1 compare the symmetrized reference-invariant 

GE and the symmetrized Rényi indices under the above scenarios for different values of the 

disparity aversion parameter α. Only values of α ≥ 0.5 are shown due to symmetry. As 

confirmed in (3.4), the standardized SRI is seen to be more conservative for values of α> 1; 

moreover, the SRI is seen to better discriminate between the different scenarios in Table 1 

for large values of α. Indeed, observe how the symmetrized reference-invariant GE can no 

longer distinguish between the various scenarios for large values of α, whereas the SRI still 

can. This is observed both in the absolute scale, in the top- and bottom-center panels, as well 

as the relative scale, in the top- and bottom-right panels. Furthermore, for α ≤ 3 

(approximately), the change in the SRI is considerably smaller than the change in the 

symmetrized reference-invariant GE, both in the absolute as well as in the relative scales, 
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which illustrates the robustness of the SRI to small changes in the distribution of the adverse 

health outcome.

4. Design-based standard errors

Martinez-Camblor (2007) establishes a central limit theorem for the total TI under simple 

random sampling. Cowell, Davidson and Flachaire (2011) use similar empirical processes 

techniques to analyze the asymptotic distribution of goodness-of-fit statistics that are derived 

from the GE class. Using Taylor series linearization, Biewen and Jenkins (2006) derive the 

sampling variances for both the total TI and MLD—as well as the GE class of total HDIs—

for complex survey data. Borrell and Talih (2011) extend the Taylor series linearization 

method to the case of grouped complex survey data to obtain the sampling variance of the 

total STI and its between-group and within-group components. Borrell and Talih (2011) 

validate the sampling variances obtained via linearization by comparing them to the ones 

obtained via balanced repeated replication and rescaled bootstrap, which are developed in 

McCarthy (1969), Fay (1989), Judkins (1990), Rao and Wu (1988), Rao, Wu and Yue 

(1992), and discussed in the context of health inequality measures in Harper et al. (2008) 

and Cheng, Han and Gansky (2008). In this paper, we adopt a strategy similar to the one in 

Borrell and Talih (2011), using Taylor series linearization, balanced repeated replication, 

and the rescaled bootstrap to evaluate and validate the design-based standard errors for the 

RI (and, by extension, the SRI) and its between- and within- group components. Below, we 

only show the calculations for the between-group component [RIα]B. The calculations for 

the sampling variance for the within-group component [RIα]W are shown in the technical 

appendix; see Talih (2012c). Also, because SRIα = (RIα +RI1−α)/2, the sampling variance 

for the SRI and its between-and within-group components easily follows. R code for 

computing the total RI and SRI, together with their group-specific, between-, and within-

group components in grouped complex survey data, as well as their design-based standard 

errors, is provided as a supplement; see Talih (2012b).

Define, for any real number a :

(4.1)

(4.2)

In the above, S is the number of strata; Cs is the number of PSU’s in stratum s; lcs is the 

number of sample observations in the PSU-stratum pair (c, s); wics is the sampling weight 

for sample observation i in the PSU-stratum pair (c, s); yics is the severity of the adverse 

health outcome for sample observation i in the PSU-stratum pair (c, s); δicsj = 1 when 

observation i [in PSU-stratum pair (c, s)] belongs to group j and δicsj = 0 otherwise; and j 

ranges from 1 to m, where m is the number of groups in the population. With the notation 
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introduced in (4.1) and (4.2), we have n = U0,·, nj = U0,j, y·· = U1,·, y·j = U1,j, ȳ·· = U1,·/U0,·, 

and ȳ·j = U1,j/U0,j.

4.1. Population-weighted groups: pj = nj/n

From (2.10), we see that the between-group component [RIα]B can be written as a function 

solely of the sufficient statistics Ua,k in (4.1). Thus, when α ≠ 0,1, the partial derivatives 

with respect to U0,k and U1,k are:

(4.3)

(4.4)

The partial derivatives for the between-group component for the SRI, which is given by 

[SRIα]B = [RIα]B + [RI1−α]B/2, easily follow.

Limiting cases—When pj = nj/n, rj ∝ ȳ·j, and qj = pjrj, the distributions p̄ = p/Σpj and q̄ = 

q/Σqj are given by p̄j = nj/n and q̄j = p̄jr̄j, respectively, with r̄j = ȳ·j/ȳ··, as in (1.1). Thus, the 

limiting cases when α → 1 or 0 in (4.3–4.4) reduce to the partial derivatives of the between-

group MLD and TI, respectively; see (2.3). These were computed in Borrell and Talih 

(2011). We group them here for completeness:

Introduce an artificial variable σicsk that represents the variance contribution from each 

sample observation. The σicsk are obtained by taking the dot product of the vector of partial 

derivatives from (4.3–4.4) with the vector of summands in the sufficient statistics in (4.1):

(4.5)

Thus, an estimate of the sample variance of [RIα]B is given by the sampling variance of the 

total statistic . The latter is readily available, e.g., using the command for 

survey estimation of variances of totals (‘svytotal’) in the R package ‘survey’; see Lumley 

(2004, 2011) and R Development Core Team (2011).
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4.2. Equally-weighted groups: pj = 1/m

From (2.12) and (4.1), when α ≠ 0,1, the partial derivatives with respect to U0,k and U1,k are 

given by:

(4.6)

(4.7)

The partial derivatives for the between-group component for the SRI, which is given by 

, also follow.

Limiting cases—Limiting expressions for the partial derivatives in (4.6–4.7) of the 

between-group component  are obtained as follows.

• When α→ 1 :

• When α→ 0 (l’Hôpital’s rule):

5. Case study from NHANES

HP2020 objective OH-5 in the Oral Health Topic Area aims to reduce the proportion of U.S. 

adults aged 45–74 with moderate or severe periodontitis. Table 2 presents estimated 

prevalence (and standard errors) from NHANES 2001–04. The gradient associated with 

socioeconomic status and the differences by sex and by race/ethnicity are well documented; 

see, for example, Borrell and Talih (2012).

Figure 2 compares the standardized SRI for values of the parameter α when groups are 

population-weighted and when groups are equally-weighted. As seen in section 2.5, the 

population-weighted SRI uses the estimated distributions (displayed in the table within each 

figure panel) for the relative shares of population (pj = nj/n) and of disease (qj = y·j/y··) in the 

symmetrized Rényi divergence Sα(p, q), whereas the equally-weighted SRI uses pj = 1/m. 

Due to symmetry of the SRI around the parameter value 0.5, only values of α ≥ 0.5 are 

shown. For values of α ≥ 0.5, the parameter α is a disparity aversion parameter for the 
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standardized SRI: the standardized SRI is nondecreasing in α for α ≥ 0.5. The rescaled 

bootstrap method allows the design-based estimation of the sampling distribution of the 

index. The box plots in Figure 2 represent the bootstrapped sampling distributions for the 

different values of α and types of indices shown.

As mentioned earlier, design-based standard errors obtained via Taylor series linearization 

can be validated against—and are generally in agreement with—the ones that are obtained 

via balanced repeated replication and rescaled bootstrap, as shown in Table 3 for the 

analysis by race/ethnicity.

Notice how the two indices in Figure 2 agree perfectly for the analysis by sex, since males 

and females are represented almost equally in the population. On the other hand, when the 

‘Other’ category is taken into account in the analysis by race/ethnicity, the population-

weighted SRI tends to be larger than the equally-weighted SRI for all values of the 

parameter α, whereas when ‘Other’ is excluded, this ordering is reversed. This suggests that 

the analyst should carefully assess the interaction between the groups’ weighting scheme 

and the partitioning of the population. Still, unlike in Harper et al. (2010), where the effect 

of weighting relative to population size versus weighting equally was examined using 

different classes of indices—the MLD for the former (a GE-based HDI with the average 

health outcome as the reference), but the IDisp for the latter (a non-entropy based HDI with 

the least adverse health outcome as the reference)—, the SRI class of HDIs introduced in 

this paper provides a unified framework for such comparative analyses, controlling more 

effectively for other characteristics of the index. However, we concur with Harper et al. 

(2010) that researchers should recognize that relying on only one HDI inevitably endorses 

normative judgments of one nature or another. Though they are mostly in agreement, here, it 

is clear from Figure 2 that it is incumbent on researchers to consider both the population-

weighted and equally-weighted SRIs, as well as the gradient that corresponds to increasing 

values of the disparity aversion parameter.

In Figure 3, the sampling distribution of the index is compared to one that is obtained under 

a null hypothesis of ‘no disparities.’ For the analysis by race/ethnicity, and without 

disrupting the survey design structure, a dummy disease indicator variable is simulated such 

that the relative shares of disease, qj = y·j/y··, are (approximately) equal to the given relative 

population shares, pj = nj/n. As seen in Figure 3, the resulting null and alternative 

distributions using the population-weighted SRI are well separated, indicating that the null 

hypothesis of ‘no disparities’ would be rejected for all values of the parameter α. Further, 

even if we were to use the equally-weighted SRI instead (i.e., pj = 1/m instead of p0j = nj/n), 

we would still reject the null; the overlap between the null and alternative distributions 

remains minimal.

The case-study in section 5 illustrates how the SRI can help examine disparities in the 

prevalence of moderate or severe periodontitis among adults aged 45–74 with data from 

NHANES 2001–04. This case-study is relevant to HP2020 because, as stated in section 1, 

most population-based objectives in HP2020 track a proportion or a rate where the 

underlying individual-level variable has a binary outcome, and because NHANES is the data 

source for approximately 1 in 7 population-based objectives in HP2020. The supplementary 
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case-study in Talih (2012a) provides further illustration of the proposed methodology with 

continuous individual-level data on total blood cholesterol levels among adults aged 20 and 

over from NHANES 2005–08. These data track Heart Disease and Stroke objective HDS-8 

in HP2020.

Caveat—The stratified multistage probability sampling design structure of NHANES is 

well-documented; see http://www.cdc.gov/nchs/nhanes.htm. While the sample weights 

provided in the NHANES public-use data files reflect the unequal probabilities of selection, 

they also reflect non-response adjustments and adjustments to independent population 

controls. Therefore, strictly speaking, they are not the true sampling weights wics in (4.1).

6. Conclusion

In this paper, we introduce a new class of HDIs, the Rényi index (RI), which is based on a 

generalized Rényi divergence. When standardized, the RI generalizes the Atkinson index; 

thus, a disparity aversion parameter can incorporate societal values associated with health 

equity. In addition, both the MLD and TI, which belong to the GE class of HDIs, are 

limiting cases of the RI. Like the MLD and TI, the RI can be symmetrized, resulting in the 

symmetrized Rényi index (SRI). We use Taylor series linearization, balanced repeated 

replication, and rescaled bootstrap to examine the design-based standard errors and 

bootstrapped sampling distributions for the between-group RI and SRI in complex survey 

data such as NHANES. A critical property of the RI and SRI is their invariance to the choice 

of the reference used for evaluating disparities, which implies that the index remains the 

same, regardless of whether we use the population average as the reference, the group with 

the least adverse health outcome, a Healthy People target, or some other reference. This 

invariance property is critical to initiatives that monitor health disparities because the 

identification of a reference group can be affected by statistical reliability. An important 

property of the SRI is its robustness when compared with its GE-based counterpart.

Unlike in past comparative studies, the SRI class of HDIs introduced here provides a unified 

framework for ascertaining the effect of weighting groups relative to population size versus 

weighting groups equally, while controlling more effectively for other characteristics of the 

index. Nonetheless, we concur with past studies that relying on only one HDI inevitably 

endorses some normative judgments. Thus, it is incumbent on the analyst who would use the 

SRI to consider both population- and equally-weighted values, together with the disparity 

aversion gradient. This would enable sensitivity analyses that support development of policy 

recommendations that are more robust to the numerous value judgments, both implicit and 

explicit, in the measurement of health disparities. Further, although the disparity aversion 

parameter α in the standardized SRI is treated in this paper as a “tuning” parameter, future 

work could, instead, determine the parameter α from global variables such as cost of 

treatment, availability of health care resources, and other structural factors discussed in 

Fleurbaey and Schokkaert(2009).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Comparison of the symmetrized Rényi index (SRI) with the symmetrized reference-

invariant GE index. The top- and bottom-left panels show the symmetrized reference-

invariant GE and the SRI, respectively, under the scenarios described in Table 1 for different 

values of the disparity aversion parameter α. Only values of α ≥ 0.5 are shown due to 

symmetry. As confirmed in (3.4), the standardized SRI is more conservative for parameter 

values α > 1. In addition, the SRI is seen to better discriminate between the different 

scenarios in Table 1 for large values of α. Furthermore, for α ≤ 3 (approximately), the 

change in the SRI is considerably smaller than the change in the symmetrized reference-

invariant GE, both in the absolute as well as the relative scales, which illustrates the 

robustness of the SRI to small changes in the distribution of the adverse health outcome.
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Fig 2. 
Standardized between-group SRI by population characteristic for the prevalence of moderate 

or severe periodontitis among U.S. adults aged 45–74, 2001–04. Due to symmetry of the 

SRI around the parameter value 0.5, only values of α ≥ 0.5 are shown. For values of α ≥ 0.5, 

the parameter α is a disparity aversion parameter for the standardized SRI: the standardized 

SRI is nondecreasing in α for α ≥ 0.5; see (2.9). The population-weighted SRI uses the 

estimated distributions (displayed in the table within each figure panel) for the relative 

shares of population (pj = nj/n, restricting to individuals with valid periodontal data) and of 

disease (qj = y·j/y··) in the symmetrized Rényi divergence Sα(p, q), whereas the equally-

weighted SRI uses pj = 1/m. The box plots are design-based, obtained via rescaled bootstrap 

with 500 replications.
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Fig 3. 
Standardized between-group SRI for the analysis of moderate or severe periodontitis 

prevalence by race/ethnicity among U.S. adults aged 45–74, 2001–04. The population-

weighted SRI uses the estimated distributions (displayed in the offset table) for the relative 

shares of population (pj = nj/n) and of disease (qj = y·j/y··) in the symmetrized Rényi 

divergence Sα(p, q), whereas the equally-weighted SRI uses pj = 1/m. The box plots are 

design-based, obtained via rescaled bootstrap with 500 replications. The null hypothesis of 

‘no disparities’ is tested with simulated data for which the null distribution q0j of disease 

burden is (approximately) equal to the population shares pj = nj/n.
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Table 1

Baseline and three hypothetical scenarios to examine changes in the SRI and its GE-based counterpart

Group (j) A B C D

Relative size nj/n 25% 25% 25% 25%

Baseline

Group rate ȳ·j 50% 40% 30% 10%

Scenario 1

Group rate ȳ·j 50% 30% 30% 10%

Scenario 2

Group rate ȳ·j 40% 40% 30% 10%

Scenario 3

Group rate ȳ·j 50% 40% 40% 10%
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Table 2

Prevalence (in percent) of moderate or severe periodontitis among U.S. adults aged 45–74, 2001–04.1

Percent SE2 95% CI3

Total 12.8 0.755 11.2 14.3

Sex

 Male 16.3 0.941 14.3 18.2

 Female 9.4 0.882 7.6 11.2

Race/Ethnicity

 White only, non-Hispanic 10.5 0.861 8.8 12.3

 Black only, non-Hispanic 22.1 1.863 18.3 25.9

 Mexican-American 18.1 2.829 12.3 23.9

 Other4 20.3 3.637 12.9 27.8

Educational attainment

 Less than high school 26.8 1.974 22.8 30.9

 High school graduate 14.6 1.811 10.9 18.3

 Some college or AA degree 11.3 0.899 9.5 13.2

 College graduate or above 6.5 1.191 4.0 8.9

Family income (percent FPL5)

 Less than 100 28.2 3.305 21.4 34.9

 100–199 24.1 2.134 19.7 28.4

 200–399 10.8 1.413 8.0 13.7

 400–499 8.4 1.504 5.3 11.4

 500 or above 8.5 1.089 6.3 10.7

 N/A6 13.3 3.362 6.5 20.2

Country of birth

 U.S. 11.8 0.713 10.4 13.3

 Outside U.S. 19.2 2.622 13.9 24.6

1
Data are from the National Health and Nutrition Examination Survey (NHANES) 2001–02 and 2003–04. The case definitions adopted by the 

CDC working group for use in population-based surveillance of periodontitis are as follows: for severe periodontitis, it is required that two or more 
interproximal sites have clinical attachment loss (CAL) ≥ 6mm, not on the same tooth, and one or more interproximal sites have pocket depth (PD) 
≥ 5mm; for moderate periodontitis, it is required that either two or more interproximal sites have CAL ≥ 4mm, not on the same tooth, or two or 
more interproximal sites have PD ≥ 5mm, not on the same tooth. Page and Eke (2007) explain the rationale for those cutoff values.

2
Designed-based standard errors (SE) obtained via Taylor linearization (e.g., SUDAAN or R ‘survey’ package).

3
Lower and upper confidence limits, respectively, for a 95 percent confidence interval (CI).

4
The category Other consists of Hispanic or Latino other than Mexican-American and non-Hispanic of races other than black and white, including 

multiracial adults. The category Other is listed to provide a complete partition of the population into mutually exclusive groups, but it is not part of 
the HP2020 population template for objectives monitored using NHANES 1999 and later.

5
Family income as a percent of the federal poverty level (FPL), also known as the poverty income ratio (PIR).

6
Adults whose family PIR is not available (N/A), listed to maintain a complete partition of the population.
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